Switch off of α –Gal epitope expression in hepatocyte like cells derived from ear fibroblast of genetically modified pig Ran Lee*, Ullah Imran*, Youngim Kim, Hayeon Wi, Keon Bong Oh, Seunghoon Lee, Jae-Seok Woo, Sun A Ock†

Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Kongjwipatjwi-ro, Iseo-meyon, Wanju-gun, JB 565-851. Republic of Korea

^{국민의 내일을 위한 정부혁신} 보다나은 농촌진흥청

Introduction

- Hyperacute rejection (HAR) is one of the major barrier in successful transplantation (Schroeder et al., 2005).
- Control of the pig GalT gene prevents acute anti-Gal antibody-mediated rejection (Ko et al., 2012).

Materials and Methods

- **Experimental animals**
- White Yucatan as a control for non genetically modified miniature pig were provided by Optifarm Inc.
- GalT KO pig was provided by National Institute of Animal Science

Figure 1. Schematic view of isolation of porcine Ear fibroblast (EF)

Culture medium

The cells were maintained in Advanced Dublbecco's modified Eagle's medium (A-DMEM; Gibco), supplemented with 10 % fetal bovine serum (Invitrogen), 1X antibiotic/ antimitotic (Invitrogen), 1X glutamax (Invitrogen), + 1% streptomycin penicilin (invitrogen), 1% gentamicin (Invitrogen)

Generation of piHeps

FOXA3

Figure 2. Schematic design for the generation of piHeps

Immunocytochemistry (ICC)

- First antibody : α-Gal monoclonal antibody (MBS 603355), Albumin antibody (Abcam ab112980),
- Second antibody: Alexa A21042, Santacruz SC3916

• **RT-PCR**

 Table 1. Primer used for gene analysis of GalT KO pig

Target	Sequence $(5' \rightarrow 3')$		
GalT	Forward	ACC AGT CAG GTA AGC CAC TCC ACC TC	
	Reverse	GTG CTG AAC ATC AAG TCA GTG CAA TGG CTC	

A		400
	ve fluorescence level	380 360
	Relativ	20
		0
	ŀ	ig

gure 6. Immunofluorescence intensity level of α -Gal and albumin in piHep Relative fluorescence density of (A) α -Gal and (B) Albumin in two type of piHeps, respectively.

piHep like cells using a confocal microscopy A, piHep derived from GalTKO pig showed positive expression of

Albumin while lack α -Gal expression. B, piHep derived from control pigs showed expression of both Albumin as well as α -Gal.

Conclusion

• The ear fibroblasts derived from both pigs (wi/wo α -Gal gene) were successfully induced into hepatocytes like cells by overexpressing three transcription factors (HNF1A, HNF4A, FOXA3) using lentiviral vector and they expressed albumin.

• Positive expression of α -Gal was found in cell membrane of piHep from wild mini pig while this expression was found negligible in piHep derived

These results confirmed the absence of α -Gal epitope in piHep derived from GalT KO pig which can be implemented in future regenerative medicine for possibly curing the human chronic liver diseases without the risk of hyper-acute rejection.

Reference

Schroeder et al., 2005 Hyperacyte Rejection Is Attenuated in GalT Knockout Swine Lungs Perfused Ex Vivo With Human Blood Transplantation

Ko et al., 2012 Nuclefection-Mediated $\alpha 1,3$ -Gene Inactivation and Membrane Cofactor Protein Expression for Pig-to-Primate Xenotransplatation. Animal Biotechnology,

Kim et al., 2015 Generation of integration- free induced hepatocyte-like cells from mouse fibroblasts, Scientific reports, 5, 15706.

Ock et al., 2016 Molecular immunology profiles of monkeys following xenografting with the islets and heart of a-1,3-galactosyltransferase knockout pigs Xenotransplantation, 23:, 357–369.

Acknowledgement

This work was carried out with the support of "Cooperative Research Program for Agriculture Science &Technology Development (no. PJ 011002032)" and 2018 RDA fellowship program of National Institute of Animal Science, Rural Development Administration, Republic of Korea.

www.nias.go.kr